2 research outputs found

    Fault detection in a three-phase inverter fed circuit: Enhancing the Tripping capability of a UPS circuit breaker using wave shape recognition algorithm

    Get PDF
    Uninterruptible power supplies (UPS) are electrical devices that protect sensitive loads from power line disturbances such as source side overcurrents caused by overvoltage and power surges. The critical load in a double conversion UPS system is supplied from an invert-er. When overcurrents occur on the load side of double conversion UPS systems, both the UPS system’s inverter and the critical load connected to it stand a high risk of damage. Load side overcurrents due to short circuits, ground faults and motor/transformer start-up are very damaging to power electronic components, electrical equipment and cable connections. There exists circuit breakers on the load side designed to trip when a huge overcurrent occurs, thereby clearing the fault. A circuit breaker is normally sized and installed based on the maxi-mum capacity of the host system and trips when a predetermined overcurrent is recorded within a specific period of time. The UPS system’s inverter has a pre-set current limit value to protect insulated-gate bipolar transistors (IGBTs) from damage. During an overcurrent, invert-ers can supply a fault current whose peak value is limited to the IGBT current limit value. This inverter supplied fault current is not high enough to trip the circuit breaker. After an extended period of overcurrent, UPS internal tripping will be activated and all loads lose power. Opera-tion of the UPS in bypass mode supplies the required fault current but exposes the sensitive load to power line distortions. Therefore, it is desired to always supply the critical load via the inverter. This study targets to design a detection algorithm for short circuits and ground faults with a detection time faster than the UPS system’s internal tripping in order to isolate the faulted ar-ea, when the inverter is supplying the critical load. To achieve this, first, a MATLAB model was designed to aid in preliminary studies of fault detection through analysing the system behaviour. Secondly, literature review was conducted and a fault detection method selected with the help of the MATLAB model. Next, laboratory tests on a real UPS system were carried out and compared to the MATLAB results. Lastly, the detection algorithm was designed, im-plemented and tested on a real double conversion UPS system. The test results indicate that the implemented detection algorithm successfully detects short circuits and ground faults well within the desired time. It also successfully distinguishes short circuits and ground faults from other sources of overcurrents such as overloading and transformer inrush current. Future development of this study includes additional features such as a fault classification method proposed for implementation to improve the UPS debugging process during maintenance. Moreover, the detection algorithm will also be refined and devel-oped further to activate a circuit that discharges a current pulse to increase the fault current fed to the circuit breaker

    Fault detection in a three-phase inverter fed circuit: Enhancing the Tripping capability of a UPS circuit breaker using wave shape recognition algorithm

    Get PDF
    Uninterruptible power supplies (UPS) are electrical devices that protect sensitive loads from power line disturbances such as source side overcurrents caused by overvoltage and power surges. The critical load in a double conversion UPS system is supplied from an invert-er. When overcurrents occur on the load side of double conversion UPS systems, both the UPS system’s inverter and the critical load connected to it stand a high risk of damage. Load side overcurrents due to short circuits, ground faults and motor/transformer start-up are very damaging to power electronic components, electrical equipment and cable connections. There exists circuit breakers on the load side designed to trip when a huge overcurrent occurs, thereby clearing the fault. A circuit breaker is normally sized and installed based on the maxi-mum capacity of the host system and trips when a predetermined overcurrent is recorded within a specific period of time. The UPS system’s inverter has a pre-set current limit value to protect insulated-gate bipolar transistors (IGBTs) from damage. During an overcurrent, invert-ers can supply a fault current whose peak value is limited to the IGBT current limit value. This inverter supplied fault current is not high enough to trip the circuit breaker. After an extended period of overcurrent, UPS internal tripping will be activated and all loads lose power. Opera-tion of the UPS in bypass mode supplies the required fault current but exposes the sensitive load to power line distortions. Therefore, it is desired to always supply the critical load via the inverter. This study targets to design a detection algorithm for short circuits and ground faults with a detection time faster than the UPS system’s internal tripping in order to isolate the faulted ar-ea, when the inverter is supplying the critical load. To achieve this, first, a MATLAB model was designed to aid in preliminary studies of fault detection through analysing the system behaviour. Secondly, literature review was conducted and a fault detection method selected with the help of the MATLAB model. Next, laboratory tests on a real UPS system were carried out and compared to the MATLAB results. Lastly, the detection algorithm was designed, im-plemented and tested on a real double conversion UPS system. The test results indicate that the implemented detection algorithm successfully detects short circuits and ground faults well within the desired time. It also successfully distinguishes short circuits and ground faults from other sources of overcurrents such as overloading and transformer inrush current. Future development of this study includes additional features such as a fault classification method proposed for implementation to improve the UPS debugging process during maintenance. Moreover, the detection algorithm will also be refined and devel-oped further to activate a circuit that discharges a current pulse to increase the fault current fed to the circuit breaker
    corecore